Location: SLC transporters @ a9cc330a733f / Electrogenic cotransporter / data / Fig10_Parent1992_150mV.dig

Author:
Weiwei Ai <wai484@aucklanduni.ac.nz>
Date:
2024-05-24 15:25:09+12:00
Desc:
Use CellMLV1 models directly; modify the initial states; add slope for step functions; fix relative path
Permanent Source URI:
http://models.cellml.org/workspace/b65/rawfile/a9cc330a733f45ad628b68d88abb7a06946133b9/Electrogenic cotransporter/data/Fig10_Parent1992_150mV.dig

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE engauge>
<Document VersionNumber="12.1" AxesPointsRequired="0">
    <Image Width="848" Height="920"><![CDATA[AAAAAYlQTkcNChoKAAAADUlIRFIAAANQAAADmAgCAAAAVMKFvwAAAAlwSFlzAAAOxAAADsQBlSsOGwAAIABJREFUeJzt3VmWq8iyLdDQG9n/Lut96KQuiSRwwAEz8zm/dkEQIKol84LH8/n8AwCgrv939wYAAHAugQ8AoDiBDwCgOIEPAKA4gQ8AoDiBDwCgOIEPAKA4gQ8AoDiBDwCgOIEPAKA4gQ8AoDiBDwCgOIEPAKA4gQ8AoDiBDwCgOIEPAKA4gQ8AoDiBDwCgOIEPAKA4gQ8AoDiBDwCgOIEPAKA4gQ8AoDiBDwCgOIEPAKA4gQ8AoDiBDwCgOIEPAKA4gQ8AoDiBDwCgOIEPAKA4gQ8AoDiBDwCgOIEPAKA4gQ8AoLh/7t6A4h6Px+sPz+fz3i0BAIaVvsL3+NfdG7Ii/hYCAFWlD3zBTQt7Mh8AcItH6qbGRA2miTYVACimfx++aR3rmnBzfYR6PHIHZQBgKImbdF/J8q7gtbV9VkAEAO6SNfDd2B/u4K/Wkw8AuFj/wPcuZV1Q07q3bKbIBwCkcEqF7/l8nhpu8pb3Xh+LIh8AcKWsTbp/yQtmMh8AcJl8gS9UVAq1MQAAX+ULfC+3lPemc+nt3oDUhUkAIKNTAl+0d53NNubxX1vXNktsu/c01EcEABTWf+LlU+0ISa8fWfjBxvn85DMAIKmUTbpdWkWPr+S9BlkQAIgsZeA74vmvv12ZL0jWBABoN1bg+0xaB6t0ohsAEN9Age9IOFvt56dVFwAIa5TAt5DVVOkAgNqSjdK9xbt6t1zGezwe7dnx+XwqCgIA1xilwgcAMCyBb7P3CN/P921sLdop8gEAF9Cku2L6OrX3P37+eV/U030QALiACh8AQHEnBr7z2iuvbwldLcV56wYAEJYK3xLpDQAoIFngu6XTW+MvbS/yyZEAwJWSBb63C8bDimVAMW5rMKx8o3TfUxZvmuj4Gi3TKX8d9gvEt3p1p7iop3uRYoOBLs7KTKemsa2ZKU40dKuFvOoFvpkU2w/sEyUJbZW0TpZ0s4G/j6hU4Cqut0fAL1n78GUk7UENn2/ZSarGXgAt8vXhe4nck+8rfaX5qkuJ5fPsSnFRNNpxjYd6k82mjbl+y1t6HgMFJK7wJZrrWNe9wh7/2veDv9bWvsKvS+7bpLA27UvMHY+5VcA4Ege+qcg3U2mvsFNPvJaVz86uWVNjpdhXZkcAbpG1SfclV2OEtFfMkXNvuUNn45p/rSTXdTGO9rbpLD1VgETSV/jiN+x+1l3IrlflbPWs2P1bZnW+fSvJKPjONm6e2wXQXfrA9ydRca3jkaLLdG6rg77rZb4aewFwiwqBD670nDi4nt3/2+VXsFWXz3Nr18wLOE9gBLn78MG9Xk/Ks4duLDyPR3tU39u5rdeB7rUXv6bj2Tq3i9IpjEDgg8quHMDRMqfgqa92iBxcZt8Njme+X9PxHFknUJgmXQgqePVuNnLl15yCv/668I+rv3fjlgbSq7CX+kMAbiHwwaW6PKrjPO9Xp4l+vxFneSVdtuT4Spb17Vi5b4O/zrxo1BqwSpMu0M3XocELc4+3h572tulE0xAeadj9/MFEOw5cT+CDG9QbhNuyMcfHNb/rhaH2fatpMtu3Lwtz8RTIfL0muXwPXgn4maQ+gUlKky4M4dRn3ten1+f7PxaWObh5q7MSdtHxM9y3nQGDS1hfC8wwMhU+GMJ5SeiC2t50PfWe31uLfKszOG79iAJ+qu9BzbvPnPP2SHGOpAQ+uEHLk2z1iZW9ZfOIr/t+9qfRNxgdb9jtJWba+zt2QIe9NOAXTboQWktr6VDivz673cjHEbiYwAec6+xYkzr5TfPrXTsid8IIBD641MXvlogQhpa3oWP3vi7rOUnHAxHhmALpCHxwD4/tlx2fQ4SqWEfjvF8OuJHABxG1P7YHecAPspvLKvVfBC4m8MFtjjy2v77T4tf6gzd3suMA/Xo3cactAqoxLQtcbTYfx/sf3ws0BrWv62n5wVD2zXUy+6mv+5tr2prGz2G2mIQHNFLhgxt8BpHHxJH1TNe2f/u4Q2M8TZRigTgEPrjH8/lcLeC1r2fh5apV88HCflXd5bfChxU4iSZdOOrICxg6PrY/G4WDZIKDm/H6eLdOQB1k3/82bsl5CwODy9THBeBeoZJ0R1X3C3jTpAsAUJwmXQDWffZbUBGERFT4AFjxtZeqkeCQyLkVviD9Qlbn69q0hoOrAshlIdgFuckDq04MfPu+/DX+VMv9ZfkraeMdyp0OmPl1W0hxNzjyBbjl/S5ATGc16Z56L9id9jYt0HEZgIBa5vr+9SVZ+INcTqnwdbn4e31X/vpKg/cfjkxtv2M9QGpH5lysx6cBiXQOfL0u/oP5abnddvYG0oWXUy1vTON6gEqyX+m/KnPZ9wtYVnlaluVZ+HuVIX3BBZJqD3niIGTXOfDNbgq3hKH2YR8tS67e5mQ+YExbx8ABNzIPn+7GACtWx3YAwQVt0j0+60GvXoCbfsTXXKCw911O+IN0klX4+n7LlM8Aln121JndhN1IIYUEge/5fEboGggwpuUBcFduCbBb0Cbdv9+TfL7S3q/2075Z0L0M4O/fm6HaHuR1Yrezk948trDafa9N+zUz89Z3r7n3AQAxxa3wLTs+QiJsu/DyhomVAMBWCfrwpdArh7W8AjhsVAUAYspX4VuY6LjvHMi3TLOy/Bu9yQ0A2GH0Cl+u2JRrawGAIEYPfOnIfLd7/OvuDQGAVvmadFscbPFsbxo+aSRyqN/I1PTESDpFxcK5nWUXyMUpdyrj/GgUpcLXXjLpUlnp8rturPEoLwWU4qCk2EgqccpBEFEC38vxW8NsfubGhU/dJEr6PHlSfJN+bWSKTaU85yFcKUqT7rsVdbk1tjHGHX8bx7RV9+t67p1v2Y0ygqRH4WvmG/yLTb1h7wH3KNr2BPR5GbZ8aL+WGfyi5lOUwDe1HLD+ttw4ZrFs00pmme/zH2/x2oCAd3N+2fHiFgf3Si1fNXOpt0dXWr0GezUftazWDYGOAjXpTs/px4fdq5qu8MgmvdezvAB81Xj6OaMupgryVnLs+e4x9Qc/ik0/vrqF9Y4Lt4hV4Vutn7U/Dr++6nvrSqYLi3ocpOISTfnnaPspV/6jaLSpr85yRWDf9f6rr4VSH8edGPj2nZpfA9bus7zj5eFKg0oKR5zbe54Ma1ZoaMl8y086h5KOAjXpzjwn7t4W6GP13v3ufXXJ5txmd0Nbxw2461dfbJw9Xdb9c1h4MO3rZf7rp2adnZo3EObiBj4oySypt+vSelDJqTFizE940wRh7WuDIwQ+2KDLnXf1GeD+fqpZ64FPm5e+wbe9MXdr33TYR+CDK2zqnHBwiF/8dh/PrR1OGnAa/2zp5a497VXkc9VwUKxRulDP127Xx0fspgt5/H2MtVydRsDcbH9r0xHvqJPBmFT44DqNz6RNI/v2LcCNlmt1s5k4Btf3Q1hY2xmf9kKyl1O5nsAHl2rpzd3YBvf8r44byZU+j+AsDu4+yqsnW/BM+Wt4zXLN7xrBPzr4JPDB1Y6M4Fv4EbEvndkh+3oEZ/+y9eTJe0p8Tlly3r6otzECgQ9S8mTKruUIfl1m36HPVZH6tbWzvNueevvOk8J5Hh/u3qI6DNqAK8xGabxHcnR5/9Lsv9wi49ud9qYODv2ZlbVinjYLOxhzg2dcj28t819u/axWhz21rLzX8vEJfHCPHZkv15OjZWtNQ32BvJnjV4FztjuNyXj1c7jyfGs5KJvSTCK9diHpWX0jgQ9uc7DOR1LLx/q8fPb1NAt44p39IJ99Dr/mvunyyQglb12q2rOFN328u8c8lSHwQTKndl3vuPLlVY02mdy9Ph+NZYLISRHhsjNz4aJbTaW4gWxi0AbcaUdf8vNu/e6eWYxwpLoXhKZWJ3bpe5UdP14jHHHOJvDBzaaZz/d4Wuw4T6YjM8xC8nbqFdexy6A7A8cJfFCKB0N8x49Rl8G5SR3c/q/fr+4NvtmPCFkIfHC/xueNucR4GfME+CyBR/4cWtJk4xUdJJiSncAHIWy9lX9t/z34/Iv8+OS4Xy/tSKHj2+Eu2PGOL9FxUdOLUbqQyWyO3NcQv1739FwJgNqm47i/Trw3uwp6/d6W6fraw9nqhk3XNq3k9XpfsIuaNxU+iKL91my+hsHVHvU5O71/TbN85CqYvfZm089O89nyS8Dau2qsjhGOfLzIQuCDQDZlvo4vWn2RHc928bscLvtd3f06t7Ps1I5NXfiRLHtNcJp04XRb54Y9uPDuRt6LnytxHmNXvnys1/Ryq6/r2L3mIKYDGnbvzsKRff3Xjg/ks5V596p+rRzO4IVO+XhFwb1Kfv6GAXKekpdMfD52ZlT48rmyGgFAVV8fJTJiVQIf8D+rN3p9yaGMhbHGruuSDNqAPYoVWb9OfjH167VvxT4HKKZlBpmWYcIUIPABrRP9v3g2sIPzJKbpNDcKe7Vp0oWdkrZvHnnuzqZAO2nmW6pKesnEt/Wibhmk5aKuR4UPtnn+6+4NudrnLg/4IdCXsl80LurCVPhgp6R3xqSbTV7vevDsD/TirWu0UOED9vPMoNHXV6IBlxH4gP00yUFSLt7RCHwAwN+fl+6UJvABTT7rAZ4NkNH0PcXTf1fzq82gDaCV7vZQjLerjUPgA1ZMX9+sBgAFLLxcR9qrSuAD1v16PHg2QF6f17UrujCBD2jlYQD1uK4HYdAGAEBxAh8AQHECHwBAcQJfVgZLAgCNBD4AgOIEPgCA4gQ+AIDiBL58Xr33zJwEADQS+AAAihP4AACKE/gAAIoT+DjX4/EwZSAA3Evg4woyHwDcSODjXO/RxDIfANxF4ON0Mh8A3EvgAwAoTuDjCop8AHAjgQ8AoDiBj4t4FxwA3EXg42padQHgYgIfAEBxAh/X0aoLALcQ+LiBVl0AuJLAx6UU+QDgegJfPjITALCJwJdPjfbQGnsBACkIfFxNhRIALibwcRtFPgC4hsCXT4EKWYFdAIBEBL58FMYAgE0EPgCA4gS+fF7toTXqfDX2AgCCE/iyyt4NLvv2A0AiAl9WZWpjZXYEAMIS+AAAihP4uI1WXQC4hsAHAFCcwMedKo04BoCwBD5CkPkA4DwCHwBAcQIfAEBxAh83M1YXAM4m8AEAFCfwAQAUJ/ARhYG6AHASgQ8AoDiBj/sZtwEApxL4AACKE/gIQZEPAM4j8BGIcRsAcAaBDwCgOIGPWBT5AKA7gY8odOMDgJMIfAAAxQl8hKNVFwD6EvgAAIoT+AhENz4AOIPABwBQnMBHLK8in258ANCRwAcAUJzABwBQnMAHAFCcwJfPq39b1QGteu8BQHcCH7FUDbIAcCOBDwCgOIGPoLTtAkAvAh8AQHECH+HoxgcAfQl8AADFCXxE5AVrANCRwAcAUJzAR2iKfABwnMAHAFCcwEdQxuoCQC8CHwBAcQIfAEBxAh/RGbcBAAcJfAAAxQl8xGXcBgB0IfCRgFZdADhC4CM0RT4AOE7gAwAoTuAjB626ALCbwAcAUJzAR3S68QHAQQIfAEBxAh9p6MYHAPsIfAAAxQl8AADFCXwkYNwGABwh8JGJbnwAsIPAl8+Y5a4x9xoAuhD4AACKE/gAAIoT+EhGNz4A2ErgAwAoTuAjDeM2AGAfgY98tOoCwCYCXz7Dxp33jiv1AcAmAh9pyHkAsI/ABwBQnMCX0uC1rmEbtQFgH4GPTAZPugCwj8DX6vF4xCksxdkSACC+f85b9SuU7C7JzDLNjvX8SkWbVjVbyfGtoovH4+HDB4BGZ1X4jpSgvtbSHv86vgHt61ldTKXtenIeAGx1YoVvn88S2meNbdMjf7rwdFWb1vO55HtVSk0AQHD9A1+Xotc0Qn0mttWM9WuG3tdfG7Pa8jS/n0kUACCmnk26x4c19I1Qv8JcS0Gu5aUO7/+S/G7hYweARmf14TvSynkwY7XkgF6NsBpzAYD4ega+50TH1X7+lo6LLadDeS4mxwUANhl3Hr6+oUHzIgAQ1omBb1+iUryhxWz8DQCw4MTA9x5Ru2n5Lr/0ShIqABBczSZdIWwcinwAsCpx4POkH5xYDwCNTn/ThqfyDtNZAKe51ocJAOyQuMIXJP10LzTO3v82+y91zU8+EwBYdnrg8zDe54IZDQGAQZzYpDvU22Y7JrOv7/99GefzbDTUOQYAuyVu0l3QEgIyBgU1PwBgh2qBb2sekp9qyBjfAeAy4QLf6pO78dF+zTTOcsbtRHYAWBUo8L2f3BFS1KaNkTkAgMgCBb5NFjJWS1Z7/dfBoBYhmAIArAoa+H5lqa1B7et6GoPaNDh+ToA3nRu5cWM4lfwNAL+c/qaNTaazbMwS1abH+df1HNyeg6viPCZnAYBlsQLfV/ue5ashoLEytxA31fYAgBQekVPLZ8zavbWVWmC7dEAsptLxBYDuQlf4znt9BcVo1QWABUEHbQAA0IvABwBQnMCXj+bpr3aM5gaAQQh8AADFCXxUo8gHADMCH3Vo7AaArwQ+AIDiBD4AgOIEPgrSjQ8ApgQ+StGNDwA+CXzUpMgHAG8CH9Uo8gHAjMAHAFCcwEdZWnUB4EXgoyCtugAwJfABABQn8FGZVl0A+BP4AADKE/ioSTc+AHgT+AAAihP4stI7bdWryOeDAgCBLytNlgBAI4Evn8fjIe21UNsDgBeBLyVRpoVYDAAvAh8AQHECH/UpiAIwOIGPyrTqAsCfwAcAUJ7AxxC06gIwMoGP4rTqAoDABwBQnMDHKLTqAjAsgQ8AoDiBj/p04wNgcAIfAEBxAh8D0Y0PgDEJfAAAxQl8DOHdjU+RD4ABCXwAAMUJfIxCkQ+AYQl8AADFCXwMxIR8AIxJ4GNEWnUBGIrABwBQnMDHWLTqAjAggY9BadUFYBwCHwBAcQIfw9GqC8BoBD7GpVUXgEEIfIxIkQ+AoQh8AADFCXwMTasuACMQ+BiUVl0AxiHwAQAUJ/AxOq26AJQn8DEurboADELgy0dM6U6RD4DaBL58pBMAYBOBLx8Vvo58mACMQODLR4XvDD5VAAoT+AAAihP4slKR6kWrLgDlCXz5CCgAwCYCH/wvQyuaAlCVwAf/R+YDoCSBLysNuwBAI4EvK7WovgRoAAoT+OA/JGkA6hH4AACKE/jgf7TqAlCVwAdzWnUBKEbgg/+jyAdASQIffKHIB0AlAh/8hyIfAPUIfPCdIh8AZQh8AADFCXwwp1UXgGIEPvhJqy4ANQh88IUiHwCVCHywRJEPgAIEPgCA4gQ++E6rLgBlCHywQqsuANkJfAAAxQl88JNWXQBqEPhgnVZdAFIT+GDJu8gn8wGQl8AHAFCcwAcr9OQDIDuBD1pp1QUgKYEPAKA4gQ/WadUFIDWBDwCgOIEPmryKfLrxAZCRwAfbyHwApCPwQSs9+QBISuADAChO4IPNtOoCkIvABxto1QUgI4EPAKA4gQ/20KoLQCICH2zzbtWV+QDIQuADAChO4IPNFPkAyEXgAwAoTuCDPczPAkAiAh8colUXgPgEPthJkQ+ALAQ+OEqRD4DgBD4AgOIEPtjP/CwApCDwAQAUJ/Dl8yomGTEQisMBQGQCH3SgSReAyAS+fBSTQtGND4D4BL58BAsAYBOBLyuxLw5FPgCCE/iy0rALADQS+LJSTApFkQ+AyAS+fF7ZQoUPAGgk8OWjhhSTIh8AYQl8+byChVQBADQS+KAbRT4AYhL48hEmAIBNBL6sDNqIyXEBICCBL5lXeU+qCEv9FYCABL5kjNgIThYHICCBD04hlAMQh8AHnSnyARCNwAdnUeQDIAiBDwCgOIEP+jMDMwChCHxwCpkPgDgEPgCA4gQ+OIsiHwBBCHwAAMUJfHAiRT4AIhD44CIyHwB3EfjgXF68AcDtBD4AgOIEPjidnnwA3Oufuzdgya+nY3sb2ecadrSvHd8MAIAbPaKllpYSSMs2r66nccd7raej1yZFO3Csep9Ljh0AFxulSffzEduSLKfLPP+1Yz3wp2EXgPsEbdI9WAL5Wkr5fNw+HksFzlna270eAIB7jVLhm9oazn4tP/13NRtaKPIBcIuCga+lp1T7c3c5Hb7/V4UPAAgrVuDrWPbo1Sh80vIMS5EPgOvFCnxXUpPjLs49AC4WdNDGQvHjyodly+96Pp9KNexjuA8A18hX4VtOV7IXAMBM9MD3dfY7qY7s9OQD4EoRm3S/NnK9/rHx6aiZDADgLVaF7+urLGYLvP6gLkJ2TmYALhOxwres/CCJX3unbFnP+2Q2egOAU+ULfG+jPSNrx1wA4DyJA19Vv1KswFeSIh8wuNc9sMwNMOzNPGXgW23VvfLjviyH6fIFwI36jpucra1G7NvxgL5sx2MN2jiu/SNrOSrtRy77OcqNRHlgNL9ud4/Ho8CdcHfsO1XKCl9jVhPCyELDLnCBXsWkXm+r/1zP+054/LfcYvfNfKwK39Zcf+qn01h0KfBFBAACGuEJe+U+Bgp8L6s7v7pAS1Zb+HrR/hs3rQSWadgFUjivvPfXMB0vuwUKfJuCWqOvyzcGten/flYfPZUBgJkd396vybhB+/DNGr8/P7XVrPb+kSPJbDYc+OuqfBehFz35gPi63KAaH+K1b4YXV45iBb7GoNZy+Fenbmk8h5bf4Vv4ROQWg9zmgOy2FmJCWS4qfd2RlmWm/xuwGTDiQ6V7utp0nFKQBgrTNxQ4ycHRry0hZnXl7dtw0ljd6T22pbS0r/y0eie//lYfq8L30n3nPThJRJEPyCvRjWu0WTgiBj4AIJTVtrJpj6yO7wi9IEHO1t/SX3/1a3nAr+6BRunSqN7XDmZM0QKcZ9+N5X1f+jVzyvJQyyO/8VSNowJu/O29qPDlE7M3KH0F/HYIpHDwxaELN5zVe1Hj4ynIPW21OLewTOP6V+fxvZIKHwAUcXs5oH2C21W378uCjDuiwgdBKfIBW7WMG11erJevN65c97STNvKuqRhU+CCBIF8QgbwuixdHGoW7/EgcoTpkC3wQV+o7HQC/hgBff3sX+CC0UF8QgQJSfJOsd8d7PB737pTAB9HJfMDt+uaVFHezFBvZTuADALppzEmJJnA56HMvbtkvgQ8SmBb5in3pBBJZfR3Zah+19rfo0pfABznU+KYL3O5gnPr64/u+iz7+dWR7znPSXfeum7l5+CCfLLNYAWVM3xuxGtFWp1+eraHl9bXX63injfCKLBU+SOP22x9QwO47SeNrZzsuVs+Ne61OkJICz8hunMYJ4O9bQa7X7eia+9uYz9AR97mAMU9W3l73ROcAAI006UJWt/cIASALgS8rD/uRmYoZgE0Evqw05wEAjQQ+SEmRD4B2Ah9kJfMB0EjggwpkPgAWCHyQmK6cALQQ+LJS0eFFwy4AqwQ+SE/mA2CZwAcVaNsFYIHAB6Uo8gHwSeCDIhT5APhF4IM6XplPkQ+AGYEPCpL5AJgS+KAmmQ+AN4EPStGTD4BPAh9UM52WT50PgD+BD0pS5wNgSuCDmrx+A4A3gQ/qk/kABifwQVnThl2ZD2BkAl8+rye3Tlq0kPkA+BP4AADKE/igOMVgAAQ+qM+IXYDBCXwwFpkPYEACHwxBwy7AyAQ+GIWGXYBhCXwwEJkPYEwCH4xF5gMYkMAHw5H5AEYj8MGIZD6AoQh8MCiZD2AcAh8g8wEUJ/DBuKaT88l8AIUJfDA0EzIDjEDgy8cTmr505gMoT+ADfIsAKE7gA/7+/s18j8dDnQ+gHoEPmJP5AIoR+ID/MWgXoCqBLx9PYs4j8wGUJPAB/2EAB0A9Ah8wZ6IWgGIEvnwUYLjANPOJfQDZCXzAd75aAJQh8GWl6MIF1PkAahD48nk9d1VfuIZxuwAFCHxZefRyGZkPIDuBLx+1Pa4n8wGkJvABTZ7Pp+laAJIS+IA9ZD6ARAQ+YANtuwAZCXzANtp2AdIR+IA9TNEHkIjAB+ykeRcgC4EP2E/mA0hB4AMOkfkA4hP4gKMM4wAITuADOpP5AKIR+IA+Zm27Yh9AHAIf0M20bfdPqQ8gDIEP6EzmA4hG4AP6k/kAQhH4gFPMhu6KfQA3EviAEyn1AUQg8AHnMksfwO0EPuAKMh/AjQQ+4CK69AHcReADrqNLH8AtBD7gUl7IAXA9gQ+4mhdyAFxM4APuodQHcBmBD7iNUh/ANQQ+4GYyH8DZBD7gfpp3AU4l8AEhaN4FOI/ABwSi1AdwBoEPiEWpD6C7x/TGSgqv558DR3mzqOecB9hNhQ8IapbwlPoAdhP4gLg+m3fFPoAdBD4gOr36AA4S+IAclPoAdhP4gDS08ALsI/AByYh9AFsJfEBKYh9AO4EPSMzULQAtBD4gN6U+gFUCH1CB2AewQOAD6vhs4RX7AP4EPqCYWanvT+wD+Pv75+4NoKbp89U777ne+6x7n4qvPzgbgTGp8AGVSXgAf39/D3fDdBQqYAdVZ2BkmnS5jQcwV3qdY6+zzrcmYDQCHyG8w59nMJcR+4BxaNLNp9hT6nP4ZJldIyxnHTAaFT5u9jmaEs42bd59UWMGalPhy6dYhQ9up+AHlGdaFjIxgy5nMFczUJ4KXz7DVviUYbjA15znTAOyE/jyGTbw/f3u5zfmp8GpJD+gEoM2yMQIDy7zObDjz9gOIC0VvnxGrvDBXRT8gNRU+Chr9oT2bOaIr9Vlb4sBshD4GIXGOLr41a9A6R2ITOCjLB3+OJVOfkAi+vDlo5Cw2+PhhOcshpADkXn+5SPwncQ8fxy3XE52RgF30aQLP8nWbDU9Wz7DnzMKuIsKX0qaJs9m9CV9mdUFuJfckJLABxktNPi6ooFTyQ35aBUKQp8/dlsdOe5cAvoS+FKS+SLQSMdxkh9wDYM2YKet8/yZoY1Ps5Ph1ziPX8sDNFLhS0kfvoxUBNnEDC9AR3JDSpp0M9o6Ma9Yz1tLFdnZAizwRElJ4KthIdIZzslXkh+wj8CXksA3gh0VwYX/pSpdBYAWAl9KHu3M6NqPl/kCCwS+lAQ+Pqn08GbABzBjWhYo4vWfsvDKAAAXFElEQVQU3zpHzOzHqeH5fC6cCcYDwYBc9imp8HGQ5r/RGAYEg1PhgxF9PuOXS4MCYnYLMzzrDAAjEPiAv7+uD/hpgFhe7bttUdE6GsOAoBiBr5U+T4xsa0Vw1fvHZ6Wmr5fVjvqiF9kt61Li9dlCIgLful/3QU8URrZw2t9+Rfxqr7x9wyJbfavvJw39kIjAt+LzaXGwsAH8bcwE70tvefDpbvvmuG5ZMq9NpdbGxep9SpCIUborFroW3Vg50OFpWCbUOMPxwLew/NbhsUfar1eXPM/BIO6shrOp8C1ZnbxUtY8rOd8q2Rpx2js43vKt4EhFcHnJkbOg7/Z0pFqwpOViu6Unn7vAsFT4xtE+TmLTiIpTmyaWz8/u31jKXwtu9cM649Cr8P3UeG9S5wPOML3XL9/9d4+hXg1/Oxqv9z2o9vWQjtCWDVkIfCva7yBKL0AQq2Oob/mauvr1eMdI4fbl22PxanF0Oopo6/ZcWQGFKYEPYDjv2LG1dtiyzoPLTBf+rOFNY9amhLSjQ+FnkXX258ZRfSfZ3ZS/urxJx0oS+ADGFfyJ/rl50385u1q2bxqa5UJmr7aga8qBLY3mO5ZZXjiy1PN6Cnwd6MYHEErLw/ik+/bqarv83q/Pncbp0FdD568a6mU9l06dKWnr8gsvX9i0/k3vmTyDwAfAiLJU2mat2Fuj3qf2hWe/6+sPztrZD/7GgH7VdLamyV++vmfyDAIfAOx0UpT5LK39+q+Ffzzu+Xx275rZ+Hs3DcFuHEbTuLaDy4dNtwIfAMQS5E2e7RtwRua74EciuGzQj8DXQfcDs6P5n17eLSY+cCCCW17dec1PTW1tOU3kPZr73ieLp9pP7dOHdh/Bfvu3unazniXvP7//N9G+LMuyL5tOwhq5dnqprh6je/f38wOfdZDqdY4VOKz8BXjTxuf5GaT0mNf0A/zsIjnro9n30Fe43Z/kxsC3/FvgDO+7TJZoyxG7b1abpiA5W+Owx/dfz9+is9w11d+Ng535E/guszXwXflJBpkVc991/vn1Jcju/NKx6PI52u6k3wVAdn2fifrwJXZ7PNq9AbMfvH1HlnXcvOU5Y6U92q0Wty7bEiAFgW9FjU5OhHJqP63GlfeNm7d3Rt7ksyQff+O3VsFXF7s3Ec66Me1ez/V7kWL8xNvCRHGNO+KbQ0e395aJfpu7UeMd9pbmyNt78tJi97W9cGQd+jE57mMK3t2lr4OzSZdx3tvbVPh+eofxltenjHle8mlTyNt32jjZhhW/EskZBjnog+zmqvPGQQt8S6aZ7+/jdFTr5u+OeUA89WEoLnm6EPhWTBvdt76emcKWc55TAoBQBL51y/VVj/baGicadRpwqtu7ewPZCXytPNFHs1rZ/XNWcBVpDzhI4IP/UMkjIBU+4CCBD/7n13u79ZgGIDuBj9H9ynlf/3y7UBvDxRz90ajs0pHAx7jM80kiTs4xOe70IvAxqFnac1cFIIgzHkkCH8NR2ANgNAIfA1HVA2BMAh9DEPUAGNn/u3sD4HTSHgCDU+GjuGnaE/UAGJPAR1kKewDwIvBRk8IeALzpw0dB0h4ATKnwUYqoBwCfVPioQ9oDgK8EPoqQ9gDgF026Wck0b6IeACxT4SM3aQ8AVgl8JCbtAUALgY+spD0AaCTwkZK0BwDtBD7ykfYAYBOjdElG2nubvSz45ddn8nXhy36ky/LHVz74CQOMTOAjq8Ef3gtpbJMdaW+Hx+MR4Xi9d+qkQLlj+YWPZffyET5qIBqBj0wGeaTNnvRfd/b5fLYstvC/yyHsc/0tv2jrcdm0/Hvh14a9tnDTxvRNsZv8+tW9ovB0/ZtODGAQIb52s1WQesnFyqe9HQGLvt5R8m/jVdbS02C2zOr6t1b4fv3gwXLm1l1b/dVbl89+XRzc2Sy7SXwqfORQPu19NdTORjD9wPdVH9uXWf2RLkd/wFNoa9/TW9Jqu+mXkPbt6bXxZ5w/79WOeVe/kcAHUbRUfWBV31Po3bi/2nq+L9zsaJrf55Yra6FrRJflz+ul8Frzvm6vq8vPfnDhBOjS83V1exrXn33cmMBHAjW+CLY0jaXeQRLpXr/ctM6txc5NTu1Iev3yZ38JXL4XXdPttdfQsRs76TZa+O50QTpUTkhpqDpQ9rS3uycWwOD2Vfh232Abf7xx3Nim9Qt8fCHtpSDnARCHJl3iypv2ZrJvPwDZCXwpDVXkS7qnSTcbgJK8S5eg4ne/BYAsBD4iKtOYCwARaNIlrshpTyQFIBEVvpRqh4z4jbnxtxAApgS+lAoHjuCVs8fj0TJ/MgCEIvARUcwg1fJOegAISB8+AslSuRT1AMhFhY8ogjfmvgXfPAD4pMIHrUQ9AJJS4SOELOU9AMhI4CMQaQ8AziDwcb8sYzUAICmBjyiU9wDgJAIfNwtV3pvNqwwANQh88D+iHgBVCXyEcHt7rmHCABQm8HGnIEW1IJsBACcx8TL3u7eoprYHQHkqfNwmQl0twjYAwNkEPu4Rra4WZDMA4AwCH0h7ABSnDx93uj1p3b4BAHABFT4AgOIEPm5gqAQAXEng42rRhmsAQHkCHwBAcQIf91DeA4DLCHxcSu89ALiewMcoHo+HuAnAmAQ+bnB9e66oB8DIBD6u80pdeu8BwMUEPuozEQwAg/NqNS6iURXgYjvaVWb36ufz+fXu3b7Ozx/P/t1736d6+14LfBSnvAeMqcvX7CMr+fWzo92WX/t7e+bTpMul7jrdB7mtALwcTHvH75mflcLVZXJJt/EqfFSW7oIEOK7Lra/L9+TpSt5/dme+hQofV7jr8n7dX5T3gEEcnHC01716eT3Te3L58Ben/Vrgo7jbrzGAMS3cflPfmZOWKjXpcp3UVzhAFkkTSWERHn8qfMmkm7v43b6QaJsBkno+n7ffbBtT5u3beUTjxocK3Cp8XCH1hQ0wmoNz7wX0nhXl1/QoLcOKF1a7IMjnJvBxolBfbgCGsrV1ZfWOvWmF96ac6aa+9+vzD7MFPtfw93tHfk1J/bmGIAQ+AKDVck2rPRSel4c+g93ubVjd09X/DVLe+xP4uECc0x2AZb/u2NN80+WlEa8K2TUPiNWJYGab0SuMhnr8GbQBAKwM+DhpOMjZ7Z6fm/25F933K1pj7osKH2e5/ow3HBgIa+stcdZFrN6d7YJnxO7hFKv986bL3P6S3EYqfAAQzixwBCkaJZrhr0sIO7Kb0VKgCh/nuuyMj3/3AUa29WYY9p7WUv0KrtcufF1P2A9H4EspfgE57BkPkELwm3wvNXbz86EccL806aYU8Ez66vryXpZPBuAaF8x+cvHPhnLS8N4zCHwAQE+Rc89J3u8RDUvgSyn4WXXX5invAezz+FfLkq8/uOX+EvOTEfhSinkyzVy5kSk+EIBxBC9MdJTlASTwpTTOhdQuyyUHEFDjfCstb5hd/V1qhLcwSpfOhFGA1L5OYt9+b5/OSPz5j+WFTbECX0phzycAkpplsoV8tuMZ9Lm2Sg+yFHFW4EsmxVn1V+tKBsjo9bzYdDeeLvz1WdO4ttUG4qrPiMj7JfClFH/iZQBu1/FJsW9Vdz2qWn7v8jJbtzz+Q1ngAwDm4ieYX46nvZKM0qWnr119AYB7CXwAAMUJfGQV/z02ABCEwEc34hcAxCTwkZJwCQDtBD46M2IDAKIR+MjHexgBYBOBjz60sQJAWAIfPSm5AUBA3rRBPmIlAGyiwgcAUJzABwBQnMBHB16hCwCRCXwAAMUJfAAAxQl8AADFCXwcZcplAAhO4CMNyRIA9hH46OOaIboyHwDsIPABABQn8HHIZSU3U/0BwG4CHwBAcQIfAEBxAh8dnN3SaqwGABwh8JHAK1DqwAcA+wh87Hdl4U3aA4DdBD6OEsUAIDiBDwCgOIEPAKA4gY+djJwFgCwEPgCA4gQ+DjFiAwDiE/gAAIoT+Ajt8XjoLAgABwl8xCXqAUAXAh97iGIAkIjAR3TGhQDAQQIf+4liAJCCwEdQWo0BoBeBDwCgOIEPAKC4f+7eAPJ5Nbae3YFPB0EA6EWFDwCgOIGPbYylAIB0BD4AgOIEPgCA4gQ+AIDiBD72MIQWABIR+AAAihP4COfxeBgLDAAdCXwAAMUJfAAAxUV8tVpLc17joIGvq9o64ODX9ow5cOH5fGpvBYBcwgW+jmHi16re/96S2Ba2Z9N6Kjl1f6VJAOguXOCbegeLx+PxKiy1R41pbpiuZ7bM8gq/ruRzPXCZTVcBALwEDXyzR9rrrzuec1/X87c9sX1dz3slnsHd+Ty/8k1jWK9D77oAdqs5aKP9uXikxdbN9ww+VQDormDga+la154qlpfcXTJkgcwH8GdS0oGdcegLBr5GvVKFdAIA9HJSyi8b+PYN7wAAqCfooI3lEKaoBgDQLmWF74KanLIfAHC9k6paQSt8L5/7vJrDNgU1L40AAEYQscL3/NfX/3r94ZqgFrPtOOZWAQBh7azwHZy4+MiSLWW5WyKR6ZcBgJguatKdRbQuweh4wOpbJuyY9j437LO0uXX3pzP1v//8fmfdps07Kdee/S6B6V63LJ8rvnsTAwALTgx8s/eP9V3z8mrrFdu+7u+Oz3b6I68/H1xJd2c31nd5C8u9ll8PszXBx7xSPi/hfV9O3oLs5sGTKmbjBpDCRcGo5e0XO1b4dW3tpY7VlRxfTy+3hw8DXKCMfTerdwo/GL6P27H9s43/+9buFO0W996k1f3d2nzRvgEd1zagz7Ou/Qdff+h7CLJWwkYLfJ+/7srf+LkB7+bg6b/csjHnabl1XrzXq2datCcWZ8iSV6DF9IY2e6zctEXn2nSp9n3EhJ6W5UaR28Vuv7O/dna6y/XS3l/OndpX+ei1qsh+Vaey7OZn1v/c8vb9ivkoba+FxNz+l45n1/W7Of0mf9lvn/2iyAe3ixt3MFbgaywUtXxel9Wcyp+d1JYl8Rz03s3PryuVNO5X5N1v2bbI2/93zuZdtsuzK+UCpz5DP8cm3vV9L0JUCBT43mMIDh6D9+FcXlV734hoLWgRzhsATtXehy+1s/cuSJPUvj58fUWceLnRkWO2qXvWr4UFLwCgr5MiaaDA19JV8/F4tHzjma7qc207+kt+rmf614u/LtT+tgcAdBeoSffvv62xf/1m8uvVLV1JDwDIKFbg+/tvh8ojQW01LG7t3fx1VYptAEB84QLf3++stiNddQxksh0AkFTEwPciYP2iZRkA2CTQoA0aicIwJl/2gN3iVvhYIPONyXEf1uxlhgBbqfABJCDtAUeo8AFARFI+HWkjAAAoTpMuAEBxAh8AQHECHwBAcQIfAEBxAh8AQHECHwBAcQIfAEBxAh8AQHECHwBAcQIfAEBxAh8AQHECHwBAcQIfAEBxAh8AQHECHwBAcQIfAEBxAh8AQHH/3L0BLHk8Hp//+Hw+r98SzvB5fDcd3NmPOzEA+OXhIRHW17Q35dgltXxkGw/rr5U4K3J5H8cjWX/rj3O7x8PDl6s55+J63dOfz+dCPnD40lnN8X9th3W6ntfyCn4Z7Qh8bggZdfma97keRzy4UMk+0KYwtfwY+HzYk8LygWs/rF9PD1WfdPZdyKtH33GPpsvXPG0+ufSK+Atr27oSffhC+3U4l8t+xPf1yG49rLOVvP/q3CjsXfhfXsazP6bZcel7qTruiWwq7f86T7a2Dxilm5Wne14LF2fLYW3/ou/ciGzH0VluzPWwj2nhqbxcof+1kpmuG0sf+/rmLq9qYYWNNxMVvrhcySxweqR2UhZ/F4kVe7J4H7KF47WcHqYtA457KK9jsRzRGg/ZdJndX+lV+CJqPIoubH5R5CvMhZ9IS6XneKHOKZHOwdkYPlfScqsX+OA6mmD425vCt34PlPXj6HLVu3UU035AW3oBtRD4IKLjN3ePh/h8AaAXQb+e7m19Al84fbtyk8vqoXSss+vYm/sXITKsx8Td28Lplg9093NgdYUGbQS16Zbt/l7M6gF1xJM6nvYc+oy+PokbT4b2WGC6rjhWj8UFX/w+CXy5ucIraZlibROnB8RnaG1J0yHzB9fTaYs06SbX5XwiAgexvFu+03Ojry+/+Tp/nst/TBffCgS+oI68cYF0TooCniJxSHt8vhqnfVoNp006AW+/Al84LuzRBLwvAH0tvCfTPb+eX6++3ZTyu9OHD+60r/Cj008u09v66msxXxzfStpn2XXciwn1chQVPriNZj5+acyFQDSNr1f5XP5sKnxxrQZ/t/7U9h2+9oG3To84Gt933iv3dx/uze1a6kAu+Vyun0VBhS8ic6aXN/0KuO/B7NzIbtahRz6jCydSEC0Hou/BWl2bwAdXu7Il192/DN8DYUAdr3eBL6jVm7vuX0l1fNfClS/tIQuHPo6t1/iRm7njziqBL67pc302yk/aS+qMlyd6L+c4ft0T3pwJMS1cpKvXr8puUpcdr/ZfZNBGaK9L3es0apgdwZYDujB31+faPv/R94Hapof7c1LfyzeHFZ8DLxaO4NY1H18J11vN+u+nf5cjK/Al5toe2ef3fmlvBNMvgVO+EMY0O14Hx+Z/DXYOfTSz49XlVvwr823K+qZ5hEudN81mr2oBFzvyVPg1of/RbeIEv5JZ+7TMyws47qEsRLFNUzJ9XXjfpE4CH0B65t7L4uAXs4OpkSs1Fl+Pz7DY+p3BWQIAcIaFuLb1jZpH1yDwAQDUZloWAIDiBD4AgOIEPgCA4gQ+AIDiBD4AgOIEPgCA4gQ+AIDiBD4AgOIEPgCA4gQ+AIDiBD4AgOIEPgCA4gQ+AIDiBD4AgOIEPgCA4gQ+AIDiBD4AgOIEPgCA4gQ+AIDiBD4AgOIEPgCA4gQ+AIDiBD4AgOIEPgCA4gQ+AIDiBD4AgOIEPoA6Ho/H4/G4eyt2Sr3xEJzAB1BEjbQk9sEZBD6ACgqEpOfzefcmQFkPFxgQzSu7PJ/P2R+mPu9dj0egG9p7g6cbf+rmXfNbLlBmRyCUQPdHYFj7qlPT29dqSnhnx61btfAjWzf7vPttpZBUaV8gDk26QEr70kCBds8FNRLSey9qHyy42D93bwBAz7JcL5vSxo1Jq2QqereDh2qmh9RU+IAKbowFQRJJkM0AYhL4ALIqWd570bALfQl8QAXtsaBlyXQhQ3kPWCbwAeRWNe0p8kFHAh8wnBoBosZeLKuaZeF6RukC/EfhIHXxoNeW6bKBawh8wIjKzPexdS/eO/4r136dznrTL11IzCZVhrto0gUquH0mvMfEX+wy4Xsjf/1v4zIHt+HU5YEZFT5gIF9fyzv19R24q2ZLJpo0+Gs9b7Y7mwZPTJf5+r7jfdsJHKTCB4ylJb50CWrB097z+Zxt4ecGz5bZtEdfFw7+mUBhKnwAR6XLMS0b/CuxHazSbf2sjv9G4E+FDxjQ8qt7e60tteM7tdwLELiYCh/Af5QMcFMLO9ilgDddw6/ugMDFVPiAES1PTcIRn70D35T94C4qfMDQVuelY59Z5puV/ZT64GIqfMCgDCO90kLZb5kgDl0IfMDotDNuciQTb5rSD+hI4ANI7PrktDpztTAHAQl8wLhWZx6O7N6tbXxhCRCEwAdwyO3h5uINaAyan1u1o/g3fdPdph8EZozSBYbW5UUOjWvonlpueQvF8m+cblKvl9dJe3CcCh9QR5fxBBndXmWcWv0kd9cIgd1MhgSMour0b69g1J6ilpdsWVvjJ/mZ2DZ9/tpzoaOatz+AcZQMRiV3Cm6kSReAoKQ96EXgA8it3mzGZXYE4hD4AOooEJU05sIZBD6A9KbZKPW7LvJuOQQn8AFUUKweVmx34HYmXgYookxIKrMjEIdpWQAAitOkCwBQnMAHAFCcwAcAUJzABwBQnMAHAFCcwAcAUJzABwBQnMAHAFDc/we0OJgs/RaswgAAAABJRU5ErkJggg==]]></Image>
    <CoordSystem>
        <General CursorSize="3" ExtraPrecision="1"/>
        <Coords Type="0" TypeString="Cartesian" Coords="0" ScaleXTheta="0" ScaleXThetaString="Linear" ScaleYRadius="0" ScaleYRadiusString="Linear" UnitsX="0" UnitsXString="Number" UnitsY="0" UnitsYString="Number" UnitsTheta="0" UnitsThetaString="Degrees (DDD.DDDDD)" UnitsRadius="0" UnitsRadiusString="Number" UnitsDate="3" UnitsDateString="YYYY/MM/DD" UnitsTime="2" UnitsTimeString="HH:MM:SS"/>
        <DigitizeCurve CursorInnerRadius="5" CursorLineWidth="2" CursorSize="1" CursorStandardCross="True"/>
        <Export PointsSelectionFunctions="0" PointsSelectionFunctionsString="InterpolateAllCurves" PointsIntervalFunctions="10" PointsIntervalUnitsFunctions="1" PointsSelectionRelations="0" PointsSelectionRelationsString="Interpolate" PointsIntervalUnitsRelations="1" PointsIntervalRelations="10" LayoutFunctions="0" LayoutFunctionsString="AllPerLine" Delimiter="0" OverrideCsvTsv="False" DelimiterString="Commas" ExtrapolateOutsideEndpoints="True" Header="1" HeaderString="Simple" XLabel="x">
            <CurveNamesNotExported/>
        </Export>
        <AxesChecker Mode="1" Seconds="3" LineColor="6"/>
        <GridDisplay Stable="True" DisableX="0" CountX="5" StartX="0" StepX="10" StopX="40" DisableY="0" CountY="6" StartY="-500" StepY="100" StopY="0" Color="0" ColorString="Black"/>
        <GridRemoval Stable="False" DefinedGridLines="False" CloseDistance="10" CoordDisableX="0" CoordDisableXString="Count" CountX="15" StartX="-5.25189" StepX="5.0123" StopX="64.9203" CoordDisableY="0" CoordDisableYString="Count" CountY="7" StartY="-599.935" StepY="100.436" StopY="2.67836"/>
        <PointMatch PointSize="48" ColorAccepted="4" ColorAcceptedString="Green" ColorCandidate="7" ColorCandidateString="Yellow" ColorRejected="6" ColorRejectedString="Red"/>
        <Segments PointSeparation="25" MinLength="2" FillCorners="False" LineWidth="4" LineColor="4" LineColorString="Green"/>
        <Curve CurveName="Axes">
            <ColorFilter CurveName="Axes" Mode="2" ModeString="Intensity" IntensityLow="0" IntensityHigh="50" ForegroundLow="0" ForegroundHigh="10" HueLow="180" HueHigh="360" SaturationLow="50" SaturationHigh="100" ValueLow="0" ValueHigh="50"/>
            <CurveStyle CurveName="Axes">
                <LineStyle Width="0" Color="8" ColorString="Transparent" ConnectAs="4" ConnectAsString="ConnectSkipForAxisCurve"/>
                <PointStyle Radius="10" LineWidth="1" Color="6" ColorString="Red" Shape="1" ShapeString="Cross"/>
            </CurveStyle>
            <CurvePoints>
                <Point Identifier="Axes&#9;point&#9;1" Ordinal="1" IsAxisPoint="True" IsXOnly="False" Index="46">
                    <PositionScreen X="146.781" Y="617.361"/>
                    <PositionGraph X="0" Y="0"/>
                </Point>
                <Point Identifier="Axes&#9;point&#9;3" Ordinal="2" IsAxisPoint="True" IsXOnly="False" Index="46">
                    <PositionScreen X="145.521" Y="785.561"/>
                    <PositionGraph X="0" Y="-500"/>
                </Point>
                <Point Identifier="Axes&#9;point&#9;5" Ordinal="3" IsAxisPoint="True" IsXOnly="False" Index="46">
                    <PositionScreen X="483.81" Y="786.821"/>
                    <PositionGraph X="40" Y="-500"/>
                </Point>
            </CurvePoints>
        </Curve>
        <CurvesGraphs>
            <Curve CurveName="Curve1">
                <ColorFilter CurveName="Curve1" Mode="2" ModeString="Intensity" IntensityLow="0" IntensityHigh="50" ForegroundLow="0" ForegroundHigh="10" HueLow="180" HueHigh="360" SaturationLow="50" SaturationHigh="100" ValueLow="0" ValueHigh="50"/>
                <CurveStyle CurveName="Curve1">
                    <LineStyle Width="1" Color="1" ColorString="Blue" ConnectAs="0" ConnectAsString="FunctionSmooth"/>
                    <PointStyle Radius="10" LineWidth="1" Color="1" ColorString="Blue" Shape="1" ShapeString="Cross"/>
                </CurveStyle>
                <CurvePoints>
                    <Point Identifier="Curve1&#9;point&#9;25" Ordinal="0" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="187.728" Y="770.442"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;26" Ordinal="1" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="193.398" Y="739.574"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;27" Ordinal="2" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="205.367" Y="698.626"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;28" Ordinal="3" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="216.706" Y="668.388"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;29" Ordinal="4" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="238.755" Y="642.56"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;30" Ordinal="5" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="263.953" Y="628.071"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;31" Ordinal="6" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="298.601" Y="621.141"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;32" Ordinal="7" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="322.54" Y="619.251"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;33" Ordinal="8" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="357.818" Y="619.251"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;34" Ordinal="9" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="401.285" Y="619.251"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;35" Ordinal="10" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="451.682" Y="617.991"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;36" Ordinal="11" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="498.929" Y="617.361"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;37" Ordinal="12" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="553.735" Y="619.251"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;38" Ordinal="13" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="608.542" Y="619.251"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;39" Ordinal="14" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="651.379" Y="617.991"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;40" Ordinal="15" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="684.137" Y="617.991"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;41" Ordinal="16" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="716.265" Y="618.621"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;42" Ordinal="17" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="741.464" Y="619.251"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;43" Ordinal="18" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="771.072" Y="620.511"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;44" Ordinal="19" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="796.9" Y="618.621"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;45" Ordinal="20" IsAxisPoint="False" IsXOnly="False" Index="46">
                        <PositionScreen X="815.169" Y="618.621"/>
                    </Point>
                </CurvePoints>
            </Curve>
        </CurvesGraphs>
    </CoordSystem>
</Document>